Low-Temperature Saw Damage Gettering to Improve Minority Carrier Lifetime in Multicrystalline Silicon
نویسندگان
چکیده
منابع مشابه
Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering
(2016) Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering. Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC...
متن کاملResponse to Phosphorus Gettering of Different Regions of Cast Multicrystalline Silicon Ingots
Minority carrier lifetimes were measured to determine the effect of phosphorus gettering on cast multicrystalline silicon substrates from central and end regions of two different ingots. One ingot exhibited visibly inferior crystallographic structure, and consistently showed lower lifetimes. For the low quality ingot, wafers from the bottom region did not respond to gettering, whilst those from...
متن کاملPhosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer
The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the...
متن کاملHydrogenation effect on low temperature internal gettering in multicrystalline silicon
We have performed a comprehensive study into low temperature ( 500 °C) internal gettering in multicrystalline silicon (mc-Si). Two groups of as-grown mc-Si wafers from different ingot height positions were subjected to the same thermal treatments with surface passivation by either silicon nitride (SiNx:H) or a temporary iodine-ethanol (I-E) chemical solution . With either passivation scheme, l...
متن کاملDetecting and gettering chromium impurities in photovoltaic crystalline silicon
Photovoltaic (PV) modules provide a source of renewable electricity by harnessing solar energy. Currently, crystalline silicon dominates the PV market with an approximate market share of 90% and record solar cell efficiencies greater than 20%. However, the PV market must decrease the cost to the consumer to maintain growth and meet global electricity demands. Increasing the solar-to-electricity...
متن کامل